Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Bioanalysis ; 14(6): 325-340, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1726396

ABSTRACT

Background: With the spread of COVID-19, anti-SARS-CoV-2 antibody tests have been utilized. Herein we evaluated the analytical performance of anti-SARS-CoV-2 antibody test kits using a new reference standard prepared from COVID-19 patient sera. Methods: Fifty-seven kits in total (16 immunochromatography types, 11 ELISA types and 30 types for automated analyzers) were examined. By measuring serially diluted reference standards, the maximum dilution factor showing a positive result and its precision were investigated. Results: The measured cut-off titers varied largely depending on the antibody kit; however, the variability was small, with the titers obtained by each kit being within twofold in most cases. Conclusion: The current results suggest that a suitable kit should be selected depending on the intended purpose.


Subject(s)
COVID-19 Serological Testing/methods , Reagent Kits, Diagnostic , Antibodies, Viral/blood , Automation, Laboratory , COVID-19 Serological Testing/instrumentation , COVID-19 Serological Testing/standards , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoglobulin G/blood , Japan , SARS-CoV-2/immunology
2.
Bioengineered ; 13(1): 876-883, 2022 01.
Article in English | MEDLINE | ID: covidwho-1585254

ABSTRACT

This research has developed a method for rapid detection of SARS-CoV-2 N protein on a paper-based microfluidic chip. The chitosan-glutaraldehyde cross-linking method is used to fix the coated antibody, and the sandwich enzyme-linked immunosorbent method is used to achieve the specific detection of the target antigen. The system studied the influence of coating antibody concentration and enzyme-labeled antibody concentration on target antigen detection. According to the average gray value measured under different N protein concentrations, the standard curve of the method was established and the sensitivity was tested, and its linear regression was obtained. The equation is y = 9.8286x+137.6, R2 = 0.9772 > 0.90, which shows a high degree of fit. When the concentration of coating antibody and enzyme-labeled antibody were 1 µg/mL and 2 µg/mL, P > 0.05, the difference was not statistically significant, so the lower concentration of 1 µg/mL was chosen as the coating antibody concentration. The results show that the minimum concentration of N protein that can be detected by this method is 8 µg/mL, and the minimum concentration of coating antibody and enzyme-labeled antibody is 1 µg/mL, which has the characteristics of high sensitivity and good repeatability.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/instrumentation , Coronavirus Nucleocapsid Proteins/analysis , Coronavirus Nucleocapsid Proteins/immunology , Lab-On-A-Chip Devices , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Biomedical Engineering , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , Coronavirus Nucleocapsid Proteins/standards , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Humans , Lab-On-A-Chip Devices/standards , Lab-On-A-Chip Devices/statistics & numerical data , Microchip Analytical Procedures/methods , Microchip Analytical Procedures/standards , Microchip Analytical Procedures/statistics & numerical data , Paper , Phosphoproteins/analysis , Phosphoproteins/immunology , Phosphoproteins/standards
3.
PLoS One ; 16(9): e0257615, 2021.
Article in English | MEDLINE | ID: covidwho-1435618

ABSTRACT

The World Health Organization (WHO) calls for the development of a rapid, biomarker-based, non-sputum test capable of detecting all forms of tuberculosis (TB) at the point-of-care to enable immediate treatment initiation. Lipoarabinomannan (LAM) is the only WHO-endorsed TB biomarker that can be detected in urine, an easily collected sample matrix. For obtaining optimal sensitivity, we and others have shown that some form of sample pretreatment is necessary to remove background from patient urine samples. A number of systems are paper-based often destined for resource limited settings. Our current work presents incorporation of one such sample pretreatment, proteinase K (ProK) immobilized on paper (IPK) and test its performance in comparison to standard proteinase K (SPK) treatment that involves addition and deactivation at high temperature prior to performing a capture ELISA. Herein, a simple and economical method was developed for using ProK immobilized strips to pretreat urine samples. Simplification and cost reduction of the proposed pretreatment strip were achieved by using Whatman no.1 paper and by minimizing the concentration of ProK (an expensive but necessary reagent) used to pretreat the clinical samples prior to ELISA. To test the applicability of IPK, capture ELISA was carried out on either LAM-spiked urine or the clinical samples after pretreatment with ProK at 400 µg/mL for 30 minutes at room temperature. The optimal conditions and stability of the IPK were tested and validation was performed on a set of 25 previously analyzed archived clinical urine samples with known TB and HIV status. The results of IPK and SPK treated samples were in agreement showing that the urine LAM test currently under development has the potential to reach adult and pediatric patients regardless of HIV status or site of infection, and to facilitate global TB control to improve assay performance and ultimately treatment outcomes.


Subject(s)
Biomarkers/urine , Endopeptidase K/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Tuberculosis/diagnosis , Endopeptidase K/chemistry , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Humans , Lipopolysaccharides/urine , Paper , Temperature
4.
Braz. arch. biol. technol ; 64(spe): e21200147, 2021. tab, graf
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-1378146

ABSTRACT

Abstract With the COVID-19 pandemic, many diagnostic tests (molecular or immunological) were rapidly standardised, given the urgency of the situation, many are still in the process of being validated. The main objective of this study was to review the aspects of the diagnostic kits approved in Brazil and their application in the different federative units to gather epidemiological information. In order to achieve these objectives, a survey was carried out on the data available at the regulatory agency (ANVISA) and in the literature. The main countries that have registered products in Brazil are China (51.4%), Brazil (16.6%), South Korea (9.2%), USA (8.8%) and Germany (3.6%). The methodologies of these products are based on the detection of nucleic-acid (15.8%), antigen (13%) and antibody (71.2%). In the immunological tests, it was verified that the sensitivity ranged from 55 to 100% and the specificity from 80 to 100%. The percentage of cases in the samples tested in Brazil is elevated in almost all federative units since eight states showed 40% of positive cases in tested samples, while 18 states displayed between 20 and 40%. In conclusion, this review showed that Brazil is dependent on external technology to respond to pandemics, epidemics and endemics disease and needs to improve its biotechnological scheme to solve further diseases outbreaks.


Subject(s)
Humans , Severe acute respiratory syndrome-related coronavirus/isolation & purification , COVID-19/diagnosis , Immunologic Tests/instrumentation , Brazil/epidemiology , Enzyme-Linked Immunosorbent Assay/instrumentation , Chromatography, Affinity/instrumentation , COVID-19 Testing/instrumentation , COVID-19 Nucleic Acid Testing/methods
5.
Biosensors (Basel) ; 11(6)2021 May 24.
Article in English | MEDLINE | ID: covidwho-1243953

ABSTRACT

Despite collaborative efforts from all countries, coronavirus disease 2019 (COVID-19) pandemic has been continuing to spread globally, forcing the world into social distancing period, making a special challenge for public healthcare system. Before vaccine widely available, the best approach to manage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is to achieve highest diagnostic accuracy by improving biosensor efficacy. For SARS-CoV-2 diagnostics, intensive attempts have been made by many scientists to ameliorate the drawback of current biosensors of SARS-CoV-2 in clinical diagnosis to offer benefits related to platform proposal, systematic analytical methods, system combination, and miniaturization. This review assesses ongoing research efforts aimed at developing integrated diagnostic tools to detect RNA viruses and their biomarkers for clinical diagnostics of SARS-CoV-2 infection and further highlights promising technology for SARS-CoV-2 specific diagnosis. The comparisons of SARS-CoV-2 biomarkers as well as their applicable biosensors in the field of clinical diagnosis were summarized to give scientists an advantage to develop superior diagnostic platforms. Furthermore, this review describes the prospects for this rapidly growing field of diagnostic research, raising further interest in analytical technology and strategic plan for future pandemics.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19 Testing/instrumentation , SARS-CoV-2/isolation & purification , Animals , Biosensing Techniques/methods , COVID-19 Testing/methods , Colorimetry/instrumentation , Colorimetry/methods , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Equipment Design , Humans , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing
6.
Transfus Clin Biol ; 28(1): 51-54, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1065638

ABSTRACT

OBJECTIVES: Examine possible pooling strategies designed to expand SARS-CoV-2 serological testing capacity. METHODS: Negative pools were assessed to determine optimal optical density (OD) cutoffs, followed by spiking weak or strong positive samples to assess initial assay performance. Samples were then randomly subjected to pool and individual testing approaches. RESULTS: Single positive specimens consistently converted pools of 5, 10, or 20 into positive outcomes. However, weaker IgG-positive samples failed to similarly convert pools of 50 to a positive result. In contrast, a stronger individual positive sample converted all pools tested into positive outcomes. Finally, examination of 150 samples configured into pools of 5, 10, 20 or 50 accurately predicted the presence of positive or negative specimens within each pool. CONCLUSIONS: These results suggest that pooling strategies may allow expansion of serological testing capacity. While limitations exist, such strategies may aid in large-scale epidemiological screening or identification of optimal convalescent plasma donors.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/blood , SARS-CoV-2/immunology , Specimen Handling/methods , COVID-19/blood , COVID-19 Serological Testing/instrumentation , Enzyme-Linked Immunosorbent Assay/instrumentation , Humans , Nephelometry and Turbidimetry , Time Factors
7.
PLoS One ; 16(2): e0246346, 2021.
Article in English | MEDLINE | ID: covidwho-1059627

ABSTRACT

BACKGROUND: In the ongoing pandemic situation of COVID-19, serological tests can complement the molecular diagnostic methods, and can be one of the important tools of sero-surveillance and vaccine evaluation. AIM: To develop and evaluate a rapid SARS-CoV-2 specific ELISA for detection of anti-SARS-CoV2 IgG from patients' biological samples. METHODS: In order to develop this ELISA, three panels of samples (n = 184) have been used: panel 1 (n = 19) and panel 2 (n = 60) were collected from RT-PCR positive patients within 14 and after 14 days of onset of clinical symptoms, respectively; whereas panel 3 consisted of negative samples (n = 105) collected either from healthy donors or pre-pandemic dengue patients. As a capturing agent full-length SARS-CoV2 specific recombinant nucleocapsid was immobilized. Commercial SARS-CoV2 IgG kit based on chemiluminescent assay was used for the selection of samples and optimization of the assay. The threshold cut-off point, inter-assay and intra-assay variations were determined. RESULTS: The incubation/reaction time was set at a total of 30 minutes with the sensitivity of 84% (95% confidence interval, CI, 60.4%, 96.6%) and 98% (95% CI, 91.1%, 100.0%), for panel 1 and 2, respectively; with overall 94.9% sensitivity (95% CI 87.5%, 98.6%). Moreover, the clinical specificity was 97.1% (95% CI, 91.9%, 99.4%) with no cross reaction with dengue samples. The overall positive and negative predictive values are 96.2% (95% CI 89.2%, 99.2%) and 96.2% (95% CI, 90.6% 99.0%), respectively. In-house ELISA demonstrated 100% positive and negative percent agreement with Elecsys Anti-SARS-CoV-2, with Cohen's kappa value of 1.00 (very strong agreement), while comparing 13 positive and 17 negative confirmed cases. CONCLUSION: The assay is rapid and can be applied as one of the early and retrospective sero-monitoring tools in all over the affected areas.


Subject(s)
Antibodies, Viral/analysis , Coronavirus Nucleocapsid Proteins/analysis , Enzyme-Linked Immunosorbent Assay/methods , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Enzyme-Linked Immunosorbent Assay/instrumentation , Humans , Immunoglobulin G/analysis , Phosphoproteins/analysis , Sensitivity and Specificity
8.
Sensors (Basel) ; 21(2)2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1016225

ABSTRACT

The outbreak of the coronavirus disease (COVID-19) pandemic caused by the novel coronavirus (SARS-CoV-2) has been declared an international public health crisis. It is essential to develop diagnostic tests that can quickly identify infected individuals to limit the spread of the virus and assign treatment options. Herein, we report a proof-of-concept label-free electrochemical immunoassay for the rapid detection of SARS-CoV-2 virus via the spike surface protein. The assay consists of a graphene working electrode functionalized with anti-spike antibodies. The concept of the immunosensor is to detect the signal perturbation obtained from ferri/ferrocyanide measurements after binding of the antigen during 45 min of incubation with a sample. The absolute change in the [Fe(CN)6]3-/4- current upon increasing antigen concentrations on the immunosensor surface was used to determine the detection range of the spike protein. The sensor was able to detect a specific signal above 260 nM (20 µg/mL) of subunit 1 of recombinant spike protein. Additionally, it was able to detect SARS-CoV-2 at a concentration of 5.5 × 105 PFU/mL, which is within the physiologically relevant concentration range. The novel immunosensor has a significantly faster analysis time than the standard qPCR and is operated by a portable device which can enable on-site diagnosis of infection.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19 Testing/instrumentation , COVID-19/diagnosis , COVID-19/virology , Point-of-Care Testing , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Antigens, Viral/analysis , Biosensing Techniques/methods , COVID-19 Testing/methods , Dielectric Spectroscopy , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Equipment Design , Graphite , Humans , Limit of Detection , Pandemics , Proof of Concept Study , Protein Subunits , SARS-CoV-2/immunology , Single Molecule Imaging/instrumentation , Single Molecule Imaging/methods , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Time Factors
9.
Am J Hum Biol ; 32(5): e23394, 2020 09.
Article in English | MEDLINE | ID: covidwho-1005715

ABSTRACT

OBJECTIVES: Investigating factors that contribute to bone loss and accretion across populations in remote settings is challenging, particularly where diagnostic tools are scarce. To mitigate this challenge, we describe validation of a commercial ELISA assay to measure osteocalcin, a biomarker of bone formation, from dried blood spots (DBS). METHODS: We validated the Osteocalcin Human SimpleStep ELISA kit from Abcam (ab1951214) using 158 matched plasma and DBS samples. Passing-Bablok regression analysis assessed the relationships between plasma and DBS osteocalcin concentrations. Dilutional linearity and spike and recovery experiments determined if the DBS matrix interfered with osteocalcin measurement, and intra- and inter-assay coefficients of variation (CVs) were calculated. Limit of detection, analyte stability, and specific forms of osteocalcin measured by the kit were also investigated. RESULTS: Mean plasma osteocalcin value was 218.2 ng/mL (range 64.6-618.1 ng/mL). Linear relationships existed between plasma and DBS concentrations of osteocalcin, with no apparent bias in plasma vs DBS concentrations. There was no apparent interference of the DBS matrix with measurement of osteocalcin in DBS. Intra-assay CV for DBS was ~8%, while average inter-assay CV was 14.8%. Limit of detection was 0.34 ng/mL. Osteocalcin concentrations were stable in DBS stored at -28°C and room temperature, but not those stored at 37°C. This ELISA kit detects total osteocalcin. CONCLUSIONS: Osteocalcin, a bone formation biomarker, can be measured from DBS. Combined with a previously validated DBS assay for TRACP-5b, a bone resorption biomarker, these assays have the potential to help researchers disentangle the many factors contributing to bone strength.


Subject(s)
Dried Blood Spot Testing/methods , Enzyme-Linked Immunosorbent Assay/methods , Osteocalcin/blood , Osteogenesis/physiology , Adult , Aged , Biomarkers/blood , Dried Blood Spot Testing/instrumentation , Enzyme-Linked Immunosorbent Assay/instrumentation , Female , Humans , Male , Middle Aged , Oregon , Reproducibility of Results , Young Adult
10.
Biosens Bioelectron ; 176: 112920, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1002363

ABSTRACT

The worldwide epidemic of novel coronavirus disease (COVID-19) has led to a strong demand for highly efficient immunobinding to achieve rapid and accurate on-site detection of SARS-CoV-2 antibodies. However, hour-scale time-consumption is usually required to ensure the adequacy of immunobinding on expensive large instruments in hospitals, and the common false negative or positive results often occur in rapid on-site immunoassay (e.g. immunochromatography). We solved this dilemma by presenting a reciprocating-flowing immunobinding (RF-immunobinding) strategy. RF-immunobinding enabled the antibodies in fluid contacting with the corresponding immobilized antigens on substrate repeatedly during continuous reciprocating-flowing, to achieve adequate immunobinding within 60 s. This strategy was further developed into an immunoassay method for the serological detection of 13 suspected COVID-19 patients. We obtained a 100% true negative and true positive rate and a limit of quantification (LOQ) of 4.14 pg/mL. Our strategy also can be a potential support for other areas related to immunorecognition, such as proteomics, immunopharmacology and immunohistochemistry.


Subject(s)
COVID-19 Serological Testing/instrumentation , COVID-19/diagnosis , Lab-On-A-Chip Devices , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antigen-Antibody Reactions , Biosensing Techniques/instrumentation , COVID-19/immunology , COVID-19/virology , COVID-19 Serological Testing/methods , Enzyme-Linked Immunosorbent Assay/instrumentation , Equipment Design , Humans , Immobilized Proteins , Pandemics
12.
Analyst ; 145(23): 7680-7686, 2020 Nov 23.
Article in English | MEDLINE | ID: covidwho-798256

ABSTRACT

This work reports the development of a rapid, simple and inexpensive colorimetric paper-based assay for the detection of the severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) humanized antibody. The paper device was prepared with lamination for easy sample handling and coated with the recombinant SARS-CoV-2 nucleocapsid antigen. This assay employed a colorimetric reaction, which is followed by horseradish peroxidase (HRP) conjugated detecting antibody in the presence of the 3,3',5,5'-tetramethylbenzidine (TMB) substrate. The colorimetric readout was evaluated and quantified for specificity and sensitivity. The characterization of this assay includes determining the linear regression curve, the limit of detection (LOD), the repeatability, and testing complex biological samples. We found that the LOD of the assay was 9.00 ng µL-1 (0.112 IU mL-1). The relative standard deviation was approximately 10% for a sample number of n = 3. We believe that our proof-of-concept assay has the potential to be developed for clinical screening of the SARS-CoV-2 humanized antibody as a tool to confirm infected active cases or to confirm SARS-CoV-2 immune cases during the process of vaccine development.


Subject(s)
Antibodies, Monoclonal, Humanized/blood , Antibodies, Viral/blood , COVID-19 Testing/methods , Colorimetry/methods , Enzyme-Linked Immunosorbent Assay/methods , Paper , SARS-CoV-2/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Viral/immunology , Armoracia/enzymology , Benzidines/chemistry , COVID-19/diagnosis , COVID-19 Testing/instrumentation , Colorimetry/instrumentation , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay/instrumentation , Horseradish Peroxidase/chemistry , Humans , Limit of Detection , Phosphoproteins/immunology , Proof of Concept Study , SARS-CoV-2/chemistry
13.
Methods Mol Biol ; 2203: 55-65, 2020.
Article in English | MEDLINE | ID: covidwho-761346

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of MERS, a severe respiratory disease first reported in the Middle East in 2012. Serological assays are used to diagnose MERS-CoV infection and to screen for serum antibodies in seroepidemiological studies. The conventional enzyme-linked immunosorbent assay (ELISA) is the preferred tool for detecting serum antibodies specific for pathogens; however, the utility of conventional ELISA with respect to detection of MERS-CoV antibodies is limited due to the number of false-positives caused by cross-reactivity of serum antibodies with antigens that are conserved among coronaviruses. The competitive ELISA (cELISA) uses a pathogen-specific monoclonal antibody (MAb) that competes with serum antibodies for binding to an antigen; therefore, it is used widely for serological surveillance of many pathogens. In this chapter, I describe detection of serum antibodies using cELISA based on MAbs specific for MERS-CoV.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Animals , Antibodies, Monoclonal , Cross Reactions , Enzyme-Linked Immunosorbent Assay/instrumentation , Humans , Mice, Inbred BALB C
14.
Biosens Bioelectron ; 169: 112572, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-741059

ABSTRACT

Convalescent serum with a high abundance of neutralization IgG is a promising therapeutic agent for rescuing COVID-19 patients in the critical stage. Knowing the concentration of SARS-CoV-2 S1-specific IgG is crucial in selecting appropriate convalescent serum donors. Here, we present a portable microfluidic ELISA technology for rapid (15 min), quantitative, and sensitive detection of anti-SARS-CoV-2 S1 IgG in human serum with only 8 µL sample volume. We first identified a humanized monoclonal IgG that has a high binding affinity and a relatively high specificity towards SARS-CoV-2 S1 protein, which can subsequently serve as the calibration standard of anti-SARS-CoV-2 S1 IgG in serological analyses. We then measured the abundance of anti-SARS-CoV-2 S1 IgG in 16 convalescent COVID-19 patients. Due to the availability of the calibration standard and the large dynamic range of our assay, we were able to identify "qualified donors" for convalescent serum therapy with only one fixed dilution factor (200 ×). Finally, we demonstrated that our technology can sensitively detect SARS-CoV-2 antigens (S1 and N proteins) with pg/mL level sensitivities in 40 min. Overall, our technology can greatly facilitate rapid, sensitive, and quantitative analysis of COVID-19 related markers for therapeutic, diagnostic, epidemiologic, and prognostic purposes.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/instrumentation , Immunoglobulin G/blood , Microfluidic Analytical Techniques/instrumentation , Pneumonia, Viral/virology , Adolescent , Adult , Antibodies, Viral/immunology , Antigens, Viral/blood , Antigens, Viral/immunology , Biosensing Techniques/economics , Biosensing Techniques/instrumentation , COVID-19 , Coronavirus Infections/therapy , Enzyme-Linked Immunosorbent Assay/economics , Equipment Design , Humans , Immunization, Passive , Immunoglobulin G/immunology , Limit of Detection , Luminescent Measurements/economics , Luminescent Measurements/instrumentation , Microfluidic Analytical Techniques/economics , Middle Aged , Pandemics , Pneumonia, Viral/therapy , SARS-CoV-2 , Time Factors , Young Adult , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL